Vehicle Drift Simulator

By Bright Soo

Senior Project

The Mathematics Department

California Polytechnic State University

December, 1997

Table of Contents
Introduction & Applications
3
Assumptions and Justifications
6
Pre-Defined Assumptions
6
Assumptions
6
Background in Vehicle Dynamics
9
Force-couple system
9
Configuration of vehicle
9
Tire frictional forces
10
An example
11
Approach to Constructing the Program
13
The Program
15
Writing
15
Known bugs (READ ME)
16
Acknowledgements
18
Bibliography
19
Appendix (Source Codes)
20
Module
20
FormSplash
20
FormGraph
21
FormOption
37
Endnotes
39

Introduction & Applications

The purpose of the Vehicle Drift Simulator program is to allow repeatable scientific experimentation on the dynamics involved in a skidding vehicle with:

1) rear wheels locked

2) no braking applied to the front wheels, and

3) front wheels' steering angles locked.

[image: image1.bmp]Study of this subject has broad applications. For example, the movie industry frequently relies on such vehicle configurations to produce spectacular stunt driving: over-steering would occur easily if the stunt driver pulls up the handbrake in the middle of a turn (figure 1). Of more significance, study of such dynamics have already in the past enabled engineers to produce better automobiles such as mid-engine cars, which have better handling characteristics especially when skidding.

While scientific predictions can easily be made on a vehicle in mostly any travel configuration at an instantaneous point in time, there is to my knowledge no publicly available programs that provides a top-view of the loci of a vehicle, and its wheels, skidding in the concerned fashion during a continuous frame of time.

Similar simulation algorithms of this sort no doubt exist in the many racing-games that are available. However, to my observation, they all lack scientific rigor
, including but not limited to:

· Lack of accuracy. Many racing games incorporate artificial parameters to make the game more pleasurable and easy. For example, the vehicle travels faster if it is behind other players' cars. Also, many games have their own set of vehicle-skidding characteristics: some games over-steer easily, very few allows you to correct it by increased throttle, which in real life is a practical correctional maneuver.

· No handbrake control, with very few exceptions.

· Limited, if any, choice of vehicle configuration.

The Vehicle Drift Simulator overcomes all these limitations and more. All parameters are user-defined numerically, rather than graphically, giving very precise control. User can send the vehicle into a spin at any speed
, manually set the rate of turn (angular velocity), and even adjust the gravity. Its calculations are scenario-independent: variables calculated for a car spinning along a curve are calculated the same way for a car sliding along a straight line, and the results are fed back into the motion equations the same way. To close this introduction, following is a list of all variables and parameters non-trivially fed into the program algorithms:

· Wheelbase length

· Wheelbase width

· Vehicle mass (weight)

· Weight distribution (front/rear) (not used for moment of inertia)

· Moment of inertia

· Tire coefficient of kinetic friction

· Speed and traveling direction of vehicle (center of mass)

· Angular velocity

· Linear and angular accelerations

· Frictional forces exerted on tires and the resultant force and torque exerted on center of mass

· Time

· Steer angle of front wheels

· Position of vehicle relative to its path of travel

Assumptions and Justifications

Pre-Defined Assumptions

· Rear wheels locked. Handbrakes in real life apply almost invariably to rear wheels only. Locking the rear wheels is to simulate what happens once the handbrake is abruptly pulled up.

· No braking applied to front wheels. If the front wheels were also locked, the resulting frictional forces would act on the vehicle much the same way as those arising from the rear wheels do, which is not at all an interesting case.

· Front wheels' steering angles locked. If not, they may change or self-align during the course of skidding, and introduce too many variables. This change in steering angle depends primarily on what is called the pneumatic trail (Wong 29), and also non-trivially on the such parameters as tire pressure, camber angle (angle of wheel plane from vertical), inclination of turning axis (as the inclined fork of a bicycle), kingpin offset, resistance arising from steering linkages, etc.

Assumptions

· Constant coefficient of kinetic friction. In reality, the coefficient may drop slightly at increased speeds. However, this drop is usually small, and so is the rate of this drop. In addition, this drop is very difficult to quantify because it depends on such parameters as the temperatures of the contact areas, adhesion, etc. (Meriam and Kraige "Statics" 350) This assumption is a common practice in the engineering discipline in the solutions of a wide range of problems.
· All four wheels skidding during motion. Thus, only kinetic (sliding) friction will be considered. This assumption is considerably consistent with reality in that, by the time any one tire regains traction, the vehicle would have come to a complete or almost complete stop, as evident from the fact that the resulting skid marks usually end where the tires are in their stopped position.
· No weight shift. In other words, only a two-dimensional model will be developed. Although weight shift is an important factor in no-slip braking (Senna 58), its contribution to the forces and the deceleration experienced by a skidding vehicle are comparatively small. It can also be observed that vehicles having their centers of mass at different heights with otherwise the same configurations behave very similarly. In any case, the forces exerted on the tires of a spinning vehicle usually dwarfs the effects of weight shift.
· Front wheels experiencing lateral frictional forces only. Because the front wheels are free to rotate on their lateral (running) axes, it is reasonable to assume that the longitudinal frictional forces exerted on these tires are negligible (figure 2). Dictated by the formula for kinetic friction, F(=((N, where F is the frictional force, (the coefficient of kinetic friction, and N the normal force (weight supported), the arising frictional force must still have its full magnitude (see assumption on (above). Therefore, as long as the front wheel has any speed in the lateral direction, there will be a frictional force in the opposite direction with the full magnitude. Intuitively, this explains why vehicles go into spins so abruptly when the hand brakes are applied.
· Magnitude of friction arising from rear wheels independent of sliding direction. In effect, we are assuming the rear tires are spherical at the ground contact patch. This is a reasonable assumption because, again, the kinetic friction formula asserts that the friction is independent of contact area.
· Frictional forces arising only from road-tire interactions. Thus, we ignore wind resistance, rolling resistance and the like. Although these kinds of resistance may be prominent at certain speeds, their effects are minimal in a skidding vehicle.
Background in Vehicle Dynamics

Force-couple system

The most important concept employed in this project is the force-couple system. It asserts that when different forces act on a rigid body, their combined net effect is equivalent to that produced by a single resultant force and couple (torque) acting on any point of the body (Meriam and Kraige, "Statics" 47). Thus, for our purposes, the forces exerted on the four tires of the vehicle can be interpreted as a single force and couple acting on its center of mass.

The resultant force is merely the vector sum of all forces, and the resultant couple the vector sum of the moments about the center of mass produced by these forces. Under this system, then, linear and angular acceleration can be independently calculated with minimal efforts.

Configuration of vehicle

When making a turn, vehicle would travel along a circle with its center being collinear with the points of contact of the two rear tires. The distance of this center from the rear tires will, of course, depend on the curvature of the turn. In order to minimize slippage ("tire scrub"), the normals of the two front tires (i.e. lateral axes) will both point at this center of travel circle, as shown in figure 3, thus allowing them to be in pure rolling without lateral sliding(Wong 282-283). This steering geometry is called Ackerman steering geometry.

In the calculation of the initial conditions of the vehicle the moment before the rear wheels are locked, the linear and angular velocity of the center of mass will be calculated using a turning radius originating from this turning center that is common to all four wheels (and any point of the vehicle).

Tire frictional forces

Calculation of friction arising from the sliding rear tires are straightforward. As noted in the assumptions section, it is merely the coefficient of kinetic friction multiplied by the normal force, or weight supported. This normal is in turn dependent on the location of center of mass, or weight distribution. For example, the rear tires of a vehicle with a 60% front / 40% rear weight distribution would each support a normal force of 20% of the vehicle weight. Note that this weight distribution corresponds to a center of mass positioned at 40% of the vehicle's length away from the front.

For the sliding front wheels, the magnitude of friction is identically calculated, with its direction perpendicular to the wheel plane and opposing the lateral sliding. This can be visualized by looking at the contact patch between the tire and the ground. As shown in (figure 4), when a front tire is both rolling forward and sliding laterally, the contact patch is sliding laterally while being rotated off this contact area. At the same time, new areas of the tire are being rotated into the contact patch. Recalling that we are ignoring rolling resistance and that no brake is applied to the front wheels, we can see the net effect is that there is always an area of contact patch sliding laterally, but rolling off without resistance, thus generating a lateral kinetic friction equal to the locked, sliding rear tires.

An example

Figure 5 shows an approximate diagram of a vehicle with front wheels at certain steering angles sliding to the right with a speed of v, while rotating counter-clockwise at an angular speed of (. vi is a vector representing the absolute velocity of the corresponding wheel, and is the vector sum of v, the vehicle velocity, and the velocity of the wheel with respect to the center of mass. Thus, because the vehicle is also rotating, the vi's are not parallel.

Observe that the opposing frictional forces Fi's are of the same magnitude despite different wheel velocities. Furthermore, F3 and F4 are directly opposite the directions of v3 and v4, respectively, but the same is not true for F1 and F2, which are laterally perpendicular to the wheels. As far as linear acceleration is concerned, the resultant force is then the sum of all four force vectors placed at the center of mass. The resultant moment would be the moment sum of these forces about the center of mass.

In this diagram, it is apparent that the resulting linear acceleration will be to the left and slightly upward. The direction of angular acceleration, however, is not so clear in this diagram, although it seems to be clockwise at a small magnitude. The point is that with different vehicle configurations and different initial conditions, the resulting moment may either turn the vehicle into a spin, or it may slow down an already-spinning vehicle (as in this case).

Approach to Constructing the Program

Microsoft's Visual Basic 5.0 Professional Edition is the programming software used to construct this program because of its powerful graphic capabilities, compatibility with large number of computers (Windows95), and ease of use (modularity).

The algorithm employs linear interpolation to approximate the path and position of the vehicle. Basically, in regular time intervals, it monitors the linear and angular velocities of the vehicle, then projects its position at the end of the time interval. Next it calculates forces acting on it at this moment, and finally calculates new acceleration parameters, to be used at the next cycle.

In deeper details, before the above cyclic algorithm is started, initial conditions, provided by the user, are input to calculate the initial position and velocities of the vehicle. The position is then plotted on screen, while the velocities are used to calculate the arising frictional forces, which are summarized into a force-couple system as described earlier. This force-couple equivalent enables the program to further calculate the linear and angular accelerations of the vehicle based on the values of vehicle mass and moment of inertia, respectively. Finally, constant-acceleration formulas are used to project the vehicle's position at a certain interval of

time tincr later
, and the new velocities and position at the end of this time interval are calculated and updated. The linear and angular constant-acceleration formulas used, respectively, in one-dimensional forms, are:
xf = xi + vitincr + (½)atincr2
(f = (i + (i + (½)(tincr2
The final velocities after tincr are simply:

vf = vi + atincr

(f = (i + (tincr

At this point the program will repeat itself and go into a cycle.

The Program

Writing

Not all parts of the program are written by me. In Visual Basic (VB), forms (windows) are visually designed via graphical user interface (GUI), so are all controls such as buttons, check boxes, scroll buttons, and so on. Most of the time, modifications to their appearances are also done through simple text entries via GUI. The entire program code, in text format, therefore contains statements defining the look of the program that are written by VB, while the rest are written by me.

The sections of codes that I wrote dictates how the code executes. They range from simple user-prompts to internal calculations, decision-making algorithms to the actually screen-drawing, and so on. In short, they are responsible for everything beyond the GUI scope of VB. Thus, VB and I comprise of the authorship of the program.

The VB programming elements can roughly be categorized into functions, sub-procedures, and modules. Functions are very similar to mathematical functions: they take in arguments and then return a value (numeric or textual). Sub-procedures are sections of codes that are executed when explicitly called by another procedure or event (such as mouse clicks) – these are the only ways they can be called. When a sub-procedure ends, the program goes into idle, and will not "flow" onto the next procedure. Finally, modules behave like a house for the sub-procedures and functions to reside in. In a module one can only declare global variables.

All the codes that have been written by me are in the appendix.

Known bugs (READ ME)

Unfortunately this program has not been designed to be fool-proof. The user must enter valid values in the text boxes for the program to run correctly, otherwise the program would crash, although such crashes does not seem to impact the Windows operating system. To assist the user in this matter, auto-popup ToolTips have been implemented for all input fields. These ToolTips will indicate valid ranges or limitations, if any, of the input fields.

During the testing of this program, it is found that the program is quite robust as long as the user follows all the instructions in the ToolTips. Thus far, the finished program has never crashed on any other causes.

One feature that have yet to be implemented is the ability to recognize when the vehicle has come to a stop. Currently, the program will continue indefinitely to make calculations on the vehicle even if all speeds have reduced to zero. Thus it is up to the user to stop the calculations, by pressing "Stop" or "Pause".

One negative side-effect of this lack of "auto-stop" capability is that, occasionally, after a vehicle has come to a near-complete stop, it may start to very slowly rotate about its center. This is due to the fact that the program uses time-interval linear interpolation techniques to approximate motion.

The forces that are bringing a spinning vehicle to a near-complete stop may, once interpolated beyond the moment of true stop, actually reverse the spinning direction. However minimal this reverse spinning rate is, the program recognizes the reversed spinning and therefore assert opposing forces which, again after interpolation, may reverse the spinning once again. And this cycle may repeat. Most of the time, the net effect is a stationary vehicle. Occasionally, however, this cycle of calculations may come to a steady state in which each successive cycle produces the same result, a result that spins the vehicle one way faster than the other. This is the causing of the mysterious spinning of the vehicle.

One attempted solution to this problem is the "Front Wheel Sensitivity" input field. It adjusts the sensitivity of the programs ability to recognize a slow spinning rate and apply frictional forces on the front wheels. Unfortunately, the scale of calculations that are causing the problem is apparently too small and random, so that this attempted solution has only limited success in this area.

A more practical use of this input field is to increase the stability or the self-aligning property of a vehicle. For example, if the simulation vehicle is set to skid directly straight ahead with no angular velocity, under zero front wheel sensitivity (most sensitive, zero allowance), the vehicle may go into a spin if the straight travel path is not vertical or horizontal, due to the intrinsic inaccuracies arising from the rounding-offs in internal calculations. In this case, increasing the input field value (increasing allowance) will delay application of lateral friction forces and thus produce a better simulation of a vehicle skidding on a straight path, where spinning would theoretically not occur.

Acknowledgements

I would like to thank Dr. Jim Mueller, my senior project advisor, for his patience, guidance, suggestions, kindness, and for being the math instructor in CalPoly that excels in his area the most. While I'd like to further elaborate, such an act would seem guilty of hypocrisy in trying to get a good evaluation.

I'd also like to thank my friend John Leung and my brother Armstrong Soo for beta-testing my program. Specifically, the zooming feature is his suggestion, and the scrolling feature a subsequent inspiration.

Next, thanks go to my family who have gone through the ordeal of not watching television most of the time during the last two weeks of this project so I can concentrate.

Last but not least, I'd like to thank my girlfriend Charlotty Wong for giving me so much spiritual support, as she did in times past, all the while when I could not spend time with her during these two weeks.

Bibliography

Meriam, J. L. , and L. G. Kraige. Engineering Mechanics: STATICS 4th Ed. New York: John Wiley & Sons, 1997

Meriam, J. L. , and L. G. Kraige. Engineering Mechanics: DYNAMICS Vol. 2, 3rd Ed. New York: John Wiley & Sons, 1992

Senna, Ayrton. Principles of Race Driving Surrey, United Kingdom, 1993

Wong, J. Y.. Theory of Ground Vehicles 2nd Ed. New York: John Wiley & Sons, 1993

Appendix (Source Codes)

Module

Option Explicit

DefDbl A-Z

'Vehicle Variables

 'Wheelbase Length & Width; Mass;

 'CenterRear=0.3 means 7/3 F/R; Moment of Inertia

Global carLength, carWidth, Mass, CenterRear, MmtInertia

'Driving Variables

Global HandBrake As Boolean

Global Vx0, Vy0, massRadius

Global LR As String 'inmost radius; Steer direction ("L" or "R")

'Vehicle Performance Variables

Global CoeffKin 'Coefficient of Kinetic Friction of one tire

'Calculation Variables

Global incT, SnapInterval, dotSize, Pi As Double

Global Sensitivity

'Graphing Variables

Global xBegin, xEnd, yBegin, yEnd, incX, incY, Res

Global x0, y0

 ' 0-CEnter, 1-FL, 2-FR, 3-RR, 4-RL

Global Connect(4) As Boolean, Color(4) As Long

Global Gyrate As Boolean

FormSplash

Option Explicit

Private Sub Form_KeyPress(KeyAscii As Integer)

 Unload Me

End Sub

Private Sub Form_Load()

 lblVersion.Caption = "Version " & App.Major & "." & App.Minor & "." & App.Revision

 lblProductName.Caption = App.Title

End Sub

Private Sub Frame1_Click()

 Unload Me

End Sub

FormGraph

Dim loopflag As Boolean, StopNow As Boolean, _

 Pause As Boolean

Dim t As Double ', tEND As double

Dim massX As Double, massY As Double

Dim WhNormal(1 To 4, 1 To 2) As Double

Dim FLxy(1 To 4, 1 To 3) As Double

Dim Vx As Double, Vy As Double

Dim AccX As Double, AccY As Double

Dim theta As Double, omega As Double, alpha As Double

Dim F(1 To 4) As Double, g As Double 'Scalar

Dim totForce(1 To 2) As Double, totTorq As Double

Dim crnF(1 To 4, 1 To 3) As Double

Dim crnV(1 To 4, 1 To 3) As Double

Dim FL(0 To 4) As String 'as constants

Dim memMtx(1 To 3) As Double

'Dim In_xBegin As double, In_xEnd As double, _

' In_yBegin As double, In_yEnd As double

Dim ChangeCar As Boolean, timeCount As Single, tick As Boolean

Private Sub Form_Load()

 Pi = 4 * Atn(1)

 g = 9.8 '9.8 m/s^2

 'Default McLaren Settings in SI Units

' carLength = 4.29 'meters, 4.29x0.82

' carWidth = 1.82 '1.82

' Mass = 1139 '1139 kg

' CenterRear = 0.412 '.412

 'MmtInertia = 2061 '2061 kg-m^2

' CoeffKin = 10 / 11.16

 'Traveling Settings

 'Vx0 = 91.7 * 1000 / 3600 ' 25.47 m/sec

 HandBrake = True

 Vx0 = 0: Vy0 = 20 '6.7 m/s = 15 mph

 massRadius = 17: LR = "L" '6.34 massRadius

 incT = 0.01 'sec

 Sensitivity = 0.0001

 dotSize = 1

 'Default Screen Graph settings

 xBegin = -20: xEnd = 7.5

 yBegin = -15: yEnd = 35

 incX = 4: incY = 4

 ' Res = 0.06

 x0 = 0: y0 = 0

 Connect(0) = 0

 Connect(1) = 0: Connect(2) = 0

 Connect(3) = 0: Connect(4) = 0

 Color(0) = vbBlack

 Color(1) = vbRed: Color(2) = vbMagenta

 Color(3) = vbBlue: Color(4) = vbGreen

 'Default internal calculation settings

 FL(0) = "CE": FL(1) = "FL": FL(2) = "FR": _

 FL(3) = "RR": FL(4) = "RL"

 Gyrate = False

' initToolTip

 carMcLaren

 theta = 0 ': torq = -11420

 omega = iniOmega

 calcMmtInertia

 InitBoxes (True)

End Sub

Private Sub cmdClear_Click()

 Cls

 DrawScale

End Sub

Private Sub cmdDraw_Click()

 cmdDraw.Caption = "Draw"

 cmdPause.Caption = "Pause"

 cmdDraw.Enabled = False

 Cls

 t = 0: 'tEND = 999

' If CheckBoxes() = False Then Exit Sub

 If chkNormal = 1 Then cmdNormal_Click

 If chkInertia = 1 Then cmdInertia_click

 ReadBoxes

 massX = x0: massY = y0: Vx = Vx0: Vy = Vy0 ': t = 0

 AutoRedraw = True

 loopflag = False

 StopNow = False

 Pause = False

' theta = 0 ': torq = -11420

' omega = iniOmega

 DrawScale

 calcForce

 Main

End Sub

Private Sub cmdPause_Click()

 If Pause = False Then

 Pause = True

 StopNow = True

 cmdPause.Caption = "Resume"

 cmdDraw.Caption = "ReDraw"

 'cmdDraw.Enabled = True

 ElseIf Pause = True Then

 Pause = False

 StopNow = False

 cmdPause.Caption = "Pause"

 cmdDraw.Caption = "Draw"

 'cmdDraw.Enabled = False

' AutoRedraw = True

 Main

 End If

 loopflag = True

End Sub

Private Sub cmdSnap_Click()

 loopflag = False

End Sub

Private Sub cmdStop_Click()

 StopNow = True

 cmdPause.Caption = "Resume"

 Pause = True

End Sub

Function Maximum(a, b)

 If Val(a) >= Val(b) Then

 Maximum = a

 Else

 Maximum = b

 End If

End Function

Public Sub BeforeMain()

 cmdDraw.Enabled = False

 cmdSnap.Enabled = True

 cmdPause.Enabled = True

 cmdStop.Enabled = True

 cmdClear.Enabled = False

 cmdSnap.SetFocus

End Sub

Public Sub Main()

 BeforeMain

 DrawWidth = dotSize

 PSet (massX, massY)

 If chkRealTime.Value = 1 Then

 Timer2.Interval = incT * 1000

 Timer2.Enabled = True

 End If

 Do Until t < 0

 If chkSnap.Value = 1 And t > SnapInterval Then

 cmdSnap_Click

 SnapInterval = t + SnapInterval

 End If

 cornerpos

 DrawLocus

' PSet (t * 7, totForce(1) / 2000), vbRed

' PSet (t * 7, totForce(2) / 2000), vbGreen

' PSet (t * 7, Sqr(totForce(1) ^ 2 + totForce(2) ^ 2) / 1000)

' AutoRedraw = False

' CurrentX = 1: CurrentY = 5

' Print t

' DrawWidth = 5

' Line (0, 0)-(totForce(1) / 1000, totForce(2) / 5000)

' AutoRedraw = True

' PSet (25, 25)

' DrawWidth = 1

 DrawBox

 FWheelNormal

' If Mag(Vx, Vy) < 0.1 And omega < 0.5 Then

' Exit Do

' End If

 If chkRealTime.Value = 0 Then

 t = t + incT

 Else

 If tick = True Then

 incT = Timer2.Interval / 1000

 t = t + incT

 tick = False

 Else

 incT = 0

 End If

 End If

 totForce(1) = 0: totForce(2) = 0

 totTorq = 0

 'F(0)=0: TotForce TotTorq 'instantaneous

 CornerVelocity

 FrontForce

 RearForce

 sumTorq

 AccX = totForce(1) / Mass

 AccY = totForce(2) / Mass

 alpha = totTorq / MmtInertia

 massX = massX + (Vx * incT) + (0.5 * AccX * (incT ^ 2)) 'uses old Vx

 massY = massY + (Vy * incT) + (0.5 * AccY * (incT ^ 2))

 Vx = Vx + AccX * incT 'updates Vx

 Vy = Vy + AccY * incT 'updates Vy

 theta = theta + (omega * incT) + (0.5 * alpha * (incT ^ 2))

 omega = omega + alpha * incT 'updates omega

 loopflag = True

' If t * 10 Mod 10 = 0 Then

 DoEvents

 If StopNow = True Then Exit Do

' End If

 Loop

 Timer2.Enabled = False

 AfterMain

 AutoRedraw = True

 DrawWidth = 1

End Sub

Public Sub AfterMain()

 cmdDraw.Enabled = True

' If NaturalEnd = True Then

' cmdSnap.Enabled = False

' cmdPause.Enabled = False

' cmdStop.Enabled = False

' End If

 cmdClear.Enabled = True

End Sub

Public Sub cornerpos()

 Dim i As Integer

' Case "FL"

 FLxy(1, 1) = -carWidth / 2

 FLxy(1, 2) = carLength * (1 - CenterRear)

' Case "FR"

 FLxy(2, 1) = carWidth / 2

 FLxy(2, 2) = carLength * (1 - CenterRear)

' Case "RR"

 FLxy(3, 1) = carWidth / 2

 FLxy(3, 2) = -carLength * CenterRear

' Case "RL"

 FLxy(4, 1) = -carWidth / 2

 FLxy(4, 2) = -carLength * CenterRear

 For i = 1 To 4

' tmpX = FLxy(i, 1)

' tmpY = FLxy(i, 2)

 Rotate FLxy(i, 1), FLxy(i, 2), theta

' FLxy(i, 1) = tmpX * Cos(theta) - tmpY * Sin(theta)

' FLxy(i, 2) = tmpX * Sin(theta) + tmpY * Cos(theta)

 Next

End Sub

Public Sub Rotate(X As Double, Y As Double, theta As Double)

 Dim tmpX As Double, tmpY As Double

 tmpX = X

 tmpY = Y

 X = tmpX * Cos(theta) - tmpY * Sin(theta)

 Y = tmpX * Sin(theta) + tmpY * Cos(theta)

End Sub

Public Sub MyPset _

(X As Double, Y As Double, FLindex As Integer)

 Static tmpX(4) As Double, tmpY(4) As Double

' Dim i As Integer

' i = IndexDeterm(FL)

 If Connect(FLindex) = False Then

 PSet (X, Y), Color(FLindex)

 ElseIf Connect(FLindex) = True Then

 If loopflag = False Then

 tmpX(FLindex) = X: tmpY(FLindex) = Y

 Connect(FLindex) = False

 MyPset X, Y, FLindex

 Connect(FLindex) = True

 Else

 Line (X, Y)-(tmpX(FLindex), tmpY(FLindex)), Color(FLindex)

 tmpX(FLindex) = X: tmpY(FLindex) = Y

 End If

 End If

End Sub

Public Function IndexDeterm(FL As String) As Integer

 If FL = "CE" Then

 IndexDeterm = 0

 ElseIf FL = "FL" Then

 IndexDeterm = 1

 ElseIf FL = "FR" Then

 IndexDeterm = 2

 ElseIf FL = "RR" Then

 IndexDeterm = 3

 ElseIf FL = "RL" Then

 IndexDeterm = 4

 End If

End Function

Public Sub DrawLocus()

 Dim i As Integer

 MyPset massX, massY, 0

 For i = 1 To 4

 MyPset FLxy(i, 1) + massX, FLxy(i, 2) + massY, i

 Next

' FLx = cornerpos("FL", "X")

' FRx = cornerpos("FR", "X")

' RLx = cornerpos("RL", "X")

' RRx = cornerpos("RR", "X")

'

' FLy = cornerpos("FL", "Y")

' FRy = cornerpos("FR", "Y")

' RLy = cornerpos("RL", "Y")

' RRy = cornerpos("RR", "Y")

'

' MyPset FLx, FLy, "FL"

' MyPset FRx, FRy, "FR"

' MyPset RLx, RLy, "RL"

' MyPset RRx, RRy, "RR"

End Sub

Public Sub DrawBox()

 Dim absXY(1 To 4, 1 To 2) As Double, i As Integer

 For i = 1 To 4

 absXY(i, 1) = FLxy(i, 1) + massX

 absXY(i, 2) = FLxy(i, 2) + massY

 Next

 If loopflag = True Then AutoRedraw = False

' If snap = True Then

' AutoRedraw = True

' snap = False

' End If

 Line (absXY(1, 1), absXY(1, 2))-(absXY(2, 1), absXY(2, 2))

 Line (absXY(2, 1), absXY(2, 2))-(absXY(3, 1), absXY(3, 2))

 Line (absXY(1, 1), absXY(1, 2))-(absXY(4, 1), absXY(4, 2))

 DrawWidth = 1 * dotSize

 Line (absXY(3, 1), absXY(3, 2))-(absXY(4, 1), absXY(4, 2)), vbGreen + vbBlue

 PSet (massX, massY), Color(0)

 For i = 1 To 4

 PSet (absXY(i, 1), absXY(i, 2)), Color(i)

 Next

 DrawWidth = dotSize

 AutoRedraw = True

End Sub

Public Function iniOmega() As Double

 'Based on Left Turn (positive omega)

 Dim circum As Double, period As Double

 If Vx0 = 0 And Vy0 = 0 Then

 iniOmega = 0

 Else

 circum = 2 * Pi * massRadius

 period = circum / Sqr(Vx0 ^ 2 + Vy0 ^ 2) 'in seconds

 iniOmega = 2 * Pi / period

 If LR = "R" Then iniOmega = -iniOmega

 If LR = "CE" Then iniOmega = 0

 End If

End Function

Public Sub CornerVelocity()

 Dim i As Integer

 For i = 1 To 4

 crnF(i, 3) = 0: crnV(i, 3) = 0

 'CornerVelocityVector= AngularVelcVector X PositionVector

 Cross 0, 0, omega, FLxy(i, 1), FLxy(i, 2), 0

 crnV(i, 1) = memMtx(1) + Vx

 crnV(i, 2) = memMtx(2) + Vy

 Next

End Sub

Public Sub FWheelNormal()

 Dim innRadius As Double, i As Integer, magFWN As Double

 innRadius = Sqr(massRadius ^ 2 _

 - (carLength * CenterRear) ^ 2) _

 - carWidth / 2

 If LR = "L" Then

 WhNormal(1, 1) = innRadius

 WhNormal(1, 2) = carLength

 WhNormal(2, 1) = innRadius + carWidth

 WhNormal(2, 2) = carLength

 ElseIf LR = "R" Then

 WhNormal(1, 1) = -innRadius - carWidth

 WhNormal(1, 2) = carLength

 WhNormal(2, 1) = -innRadius

 WhNormal(2, 2) = carLength

 ElseIf LR = "CE" Then

 WhNormal(1, 1) = 1

 WhNormal(1, 2) = 0

 WhNormal(2, 1) = 1

 WhNormal(2, 2) = 0

 End If

 For i = 1 To 2

 Rotate WhNormal(i, 1), WhNormal(i, 2), theta

 magFWN = Mag(WhNormal(i, 1), WhNormal(i, 2))

 WhNormal(i, 1) = WhNormal(i, 1) / magFWN

 WhNormal(i, 2) = WhNormal(i, 2) / magFWN

 Next

End Sub

Public Sub FrontForce()

Dim i As Integer, direction As Double, _

 mag1 As Single, mag2 As Single

' FWheelNormal

 For i = 1 To 2

 direction = Dot(WhNormal(i, 1), WhNormal(i, 2), _

 crnV(i, 1), crnV(i, 2))

' If direction > 0 Then

' direction = 1

' ElseIf direction < 0 Then

' direction = -1

' End If

' direction = Sgn(direction)

 mag1 = Mag(WhNormal(i, 1), WhNormal(i, 2))

 mag2 = Mag(crnV(i, 1), crnV(i, 2))

 If Abs(direction) <= Sensitivity * mag1 * mag2 Then

 direction = 0

 Else

 direction = Sgn(direction)

 End If

 crnF(i, 1) = -direction * F(i) * WhNormal(i, 1)

 crnF(i, 2) = -direction * F(i) * WhNormal(i, 2)

 totForce(1) = totForce(1) + crnF(i, 1)

 totForce(2) = totForce(2) + crnF(i, 2)

 Next

End Sub

Public Sub RearForce()

 Dim msg As String, i As Integer

 Dim magV As Double, direction As Double, magRWN As Double

 For i = 3 To 4

 If HandBrake = True Then

 magV = Mag(crnV(i, 1), crnV(i, 2))

 crnF(i, 1) = -F(i) * crnV(i, 1) / magV

 crnF(i, 2) = -F(i) * crnV(i, 2) / magV

 totForce(1) = totForce(1) + crnF(i, 1)

 totForce(2) = totForce(2) + crnF(i, 2)

 Else

 WhNormal(i, 1) = 1: WhNormal(i, 2) = 0

 Rotate WhNormal(i, 1), WhNormal(i, 2), theta

 magRWN = Mag(WhNormal(i, 1), WhNormal(i, 2))

 WhNormal(i, 1) = WhNormal(i, 1) / magRWN

 WhNormal(i, 2) = WhNormal(i, 2) / magRWN

 direction = Dot(WhNormal(i, 1), WhNormal(i, 2), _

 crnV(i, 1), crnV(i, 2))

 If direction > 0 Then

 direction = 1

 ElseIf direction < 0 Then

 direction = -1

 End If

 crnF(i, 1) = -direction * F(i) * WhNormal(i, 1)

 crnF(i, 2) = -direction * F(i) * WhNormal(i, 2)

 totForce(1) = totForce(1) + crnF(i, 1)

 totForce(2) = totForce(2) + crnF(i, 2)

 End If

 Next

End Sub

Public Sub sumTorq()

 Dim i As Integer, currTorq As Double

 totTorq = 0

 For i = 1 To 4

 Cross FLxy(i, 1), FLxy(i, 2), 0, crnF(i, 1), crnF(i, 2), 0

 currTorq = memMtx(3)

 totTorq = totTorq + currTorq

 Next

End Sub

Public Function Dot(Ax As Double, Ay As Double, _

Bx As Double, By As Double) As Double

 Dot = Ax * Bx + Ay * By

End Function

Public Sub Cross(Ax As Double, Ay As Double, Az As Double, _

Bx As Double, By As Double, Bz As Double)

 memMtx(1) = Ay * Bz - Az * By

 memMtx(2) = -Ax * Bz + Az * Bx

 memMtx(3) = Ax * By - Ay * Bx

End Sub

Public Function Mag(i As Double, j As Double, Optional k As Double = 0) As Double

 Mag = Sqr(i ^ 2 + j ^ 2 + k ^ 2)

End Function

Public Sub calcForce()

 F(1) = CoeffKin * (Mass * g) * (CenterRear)

 F(2) = F(1)

 F(3) = CoeffKin * (Mass * g) * (1 - CenterRear)

 F(4) = F(3)

End Sub

Public Sub calcMmtInertia()

 MmtInertia = Mass * (carWidth ^ 2 + carLength ^ 2) / 12

End Sub

Private Sub Form_Unload(Cancel As Integer)

 End

End Sub

Private Sub mnuOption_click()

 frmOption.Show

End Sub

Private Sub mnuReset_Click()

 Form_Load

End Sub

Private Sub mnuExit_Click()

 End

End Sub

Private Sub mnuAbout_Click()

 frmAbout.Show

End Sub

Private Sub cmdOK_Click()

 frmAbout.Hide

End Sub

Public Sub DrawScale()

Dim oriX As Double, oriY As Double, X As Double, Y As Double

Dim marginX As Double, marginY As Double, labelX As Double

Dim ratio, framePercent, scFrameWidth, twFrameWidth

Dim DPlace As Double, msg As String

Dim Aspect As Double, tmpAspect As Double

Dim DesiredWidth As Double, DesiredHeight As Double, _

 AddWidth As Double, AddHeight As Double

Dim ULx As Double, ULy As Double, _

 LRx As Double, LRy As Double

Dim tmpX0 As Double, tmpX1 As Double, _

 tmpY0 As Double, tmpY1 As Double

Cls

On Error GoTo errortrap

tmpX0 = xBegin: tmpX1 = xEnd: tmpY0 = yBegin: tmpY1 = yEnd

Scale

Aspect = frmGraph.Height / frmGraph.Width

twFrameWidth = fmeControl.Left + fmeControl.Width

framePercent = twFrameWidth / (frmGraph.Width - twFrameWidth)

scFrameWidth = (xEnd - xBegin) * framePercent

'Scale-label-scale structure for leaving space for labels _

 at right and bottom edges.

Scale (xBegin - scFrameWidth, yEnd)-(xEnd, yBegin)

labelX = Maximum(Abs(TextWidth(yBegin)), Abs(TextWidth(yEnd)))

marginX = Abs(TextWidth("X"))

marginY = Abs(TextHeight("X"))

ULx = xBegin - scFrameWidth - labelX - 5 * marginX

ULy = yEnd + 2 * marginY

LRx = xEnd + labelX + 3 * marginX

LRy = yBegin - 2 * marginY

tmpAspect = (ULy - LRy) / (LRx - ULx)

If tmpAspect > Aspect Then

 'CurrentH/DesiredW=Aspect

 DesiredWidth = (ULy - LRy) / Aspect

 AddWidth = (DesiredWidth - (LRx - ULx)) / 2

 ULx = ULx - AddWidth

 LRx = LRx + AddWidth

 DesiredWidth = (yEnd - yBegin) / Aspect

 AddWidth = (DesiredWidth - (xEnd - xBegin)) / 2

 xBegin = xBegin - AddWidth

 xEnd = xEnd + AddWidth

ElseIf tmpAspect < Aspect Then

 'DesiredH/CurrentW=Aspect

 DesiredHeight = (LRx - ULx) * Aspect

 AddHeight = (DesiredHeight - (ULy - LRy)) / 2

 ULy = ULy + AddHeight

 LRy = LRy - AddHeight

 DesiredWidth = (xEnd - xBegin) * Aspect

 AddHeight = (DesiredHeight - (yEnd - yBegin)) / 2

 yBegin = yBegin - AddHeight

 yEnd = yEnd + AddHeight

End If

Scale (ULx, ULy)-(LRx, LRy)

If (xBegin <= 0 And 0 <= xEnd) Then

 oriX = 0

Else

 oriX = xBegin

End If

If (yBegin <= 0 And 0 <= yEnd) Then

 oriY = 0

Else

 oriY = yBegin

End If

Line (xBegin, oriY)-(xEnd, oriY)

Line (oriX, yBegin)-(oriX, yEnd)

X = 0 'labeling starts at 0

Do

 If X <= xEnd Then

 Line (X, oriY - marginY / 2)-(X, oriY + marginY / 2)

 CurrentX = X - marginX / 1.5

 CurrentY = oriY - marginY / 2

 Print X

 End If

 If -X >= xBegin Then

 Line (-X, oriY - marginY / 2)-(-X, oriY + marginY / 2)

 CurrentX = -X - marginX / 1.5

 CurrentY = oriY - marginY / 2

 Print -X

 End If

 X = X + incX

 ' If X >= 1E+20 Then GoTo errortrap

Loop Until X > xEnd And -X < xBegin

Y = incY 'labeling starts at incY

Do

 DPlace = TextWidth(Str(Y))

 If Y <= yEnd Then

 Line (oriX - marginX / 2, Y)-(oriX + marginX / 2, Y)

 CurrentX = oriX - marginX - DPlace

 CurrentY = Y + marginY / 2

 Print Y

 End If

 If -Y >= yBegin Then

 Line (oriX - marginX / 2, -Y)-(oriX + marginX / 2, -Y)

 CurrentX = oriX - marginX - DPlace

 CurrentY = -Y + marginY / 2

 Print -Y

 End If

 Y = Y + incY

 'If Y >= 1E+20 Then GoTo errortrap

Loop Until Y > yEnd And -Y < yBegin

xBegin = tmpX0: xEnd = tmpX1: yBegin = tmpY0: yEnd = tmpY1

Exit Sub

errortrap:

 msg = "Something in SCALE went wrong, man!" & Chr$(13) & _

 "Visual Basic (VB) Error Number: " & Err.Number & Chr$(13) & _

 "VB Description: " & Err.Description

 MsgBox msg, vbMsgBoxHelpButton, "Error", Err.HelpFile, Err.HelpContext

xBegin = tmpX0: xEnd = tmpX1: yBegin = tmpY0: yEnd = tmpY1

Exit Sub

End Sub

Public Sub InitBoxes _

(Optional Init As Boolean = False)

Dim i As Integer

 txtInput(0).Text = carLength

 txtInput(1).Text = carWidth

 txtInput(2).Text = Mass

 txtInput(3).Text = (1 - CenterRear) * 100

 txtInput(4).Text = CoeffKin

 If Init = True Then

 txtInput(5).Text = MmtInertia

 txtInput(6).Text = Sqr(Vx0 ^ 2 + Vy0 ^ 2)

 txtInput(7).Text = 0

 With txtInput(8)

 Select Case LR

 Case "L"

 .Text = "Left"

 Case "R"

 .Text = "Right"

 Case "CE"

 .Text = "Center"

 End Select

 End With

 txtInput(9).Text = massRadius

 txtInput(10).Text = g

 txtInput(11).Text = theta

 txtInput(12).Text = -omega / (2 * Pi)

 txtInput(13).Text = incT * 1000

 txtInput(14).Text = incT * 40000

 txtInput(15).Text = dotSize

 txtInput(16).Text = x0

 txtInput(17).Text = y0

 txtInput(18).Text = Sensitivity

 For i = 0 To 4

 If Connect(i) = True Then

 chkWheel(i) = 1

 Else

 chkWheel(i) = 0

 End If

 Next

 End If

 ChangeCar = False

End Sub

Public Sub ReadBoxes()

Dim Radian(1 To 2) As Double, i As Integer, factor As Single

factor = 1E+20

 carLength = txtInput(0).Text

 carWidth = txtInput(1).Text

 Mass = txtInput(2).Text

 CenterRear = 1 - txtInput(3).Text / 100

 CoeffKin = txtInput(4).Text

 If Gyrate = False Then

 MmtInertia = txtInput(5).Text

 Else

 MmtInertia = txtInput(5).Text ^ 2 * Mass

 End If

 Radian(1) = txtInput(7).Text / 180 * Pi

 Vx0 = txtInput(6).Text * Sin(Radian(1)) 'Cos(Pi / 2 - Radian(1))

 Vy0 = txtInput(6).Text * Cos(Radian(1)) 'Sin(Pi / 2 - Radian(1))

' Vx0 = Fix(Vx0 * factor) / factor

' Vy0 = Fix(Vy0 * factor) / factor

' MsgBox (Vx0)

' Vx0 = txtInput(6).Text

' Vy0 = txtInput(7).Text

'' If Vy0 = 0 Then

'' theta = Sgn(Vx0) * Pi / 2

'' elseif vy0

' theta = -Atn(Vx0 / Vy0) + txtInput(11).Text

 Select Case txtInput(8).Text

 Case "Left"

 LR = "L"

 Case "Right"

 LR = "R"

 Case "Center"

 LR = "CE"

 End Select

 massRadius = txtInput(9).Text

 g = txtInput(10).Text

 Radian(2) = txtInput(11).Text / 180 * Pi

' If Vx0 = 0 And Vy0 >= 0 Then

' theta = 0

' ElseIf Vx0 = 0 And Vy0 < 0 Then

' theta = -Pi

' Else

' theta = Atn(Vy0 / Vx0)

' End If

' theta = theta + Radian + Pi / 2

 theta = -Radian(1) - Radian(2)

 omega = -txtInput(12) * 2 * Pi

 incT = txtInput(13).Text / 1000

 SnapInterval = txtInput(14).Text / 1000

 dotSize = txtInput(15).Text

 x0 = txtInput(16).Text

 y0 = txtInput(17).Text

 Sensitivity = txtInput(18).Text

 For i = 0 To 4

 If chkWheel(i) = 1 Then

 Connect(i) = True

 Else

 Connect(i) = False

 End If

 Next

End Sub

Private Sub cmdNormal_Click()

Dim tmpOmega As Double

 ReadBoxes

 tmpOmega = iniOmega

 txtInput(11).Text = 0

 txtInput(12).Text = -tmpOmega / (2 * Pi)

End Sub

Private Sub cmdInertia_click()

 ReadBoxes

 calcMmtInertia

 If Gyrate = False Then

 txtInput(5).Text = MmtInertia

 Else

 txtInput(5).Text = Sqr(MmtInertia / Mass)

 End If

End Sub

Private Sub scrX_Change(Index As Integer)

Dim xIncr As Double

 With scrX(Index)

 Select Case Index

 Case 0

 xIncr = (xEnd - xBegin) * 0.04 '25 clicks cycle

 xEnd = xEnd - Sgn(.Value) * xIncr

 xBegin = xBegin - Sgn(.Value) * xIncr

' Case 1

' incX = incX + 2 * (-Sgn(.Value))

 End Select

 .Value = 0

 End With

 DrawScale

End Sub

Private Sub scrY_Change(Index As Integer)

Dim yIncr As Double

 With scrY(Index)

 Select Case Index

 Case 0

 yIncr = (yEnd - yBegin) * 0.04 '25 clicks cycle

 yEnd = yEnd + Sgn(.Value) * yIncr

 yBegin = yBegin + Sgn(.Value) * yIncr

 End Select

 .Value = 0

 End With

 DrawScale

End Sub

Public Sub scrZoom_Change(Index As Integer)

Dim xIncr As Double, yIncr As Double, Incr As Single

 With scrZoom(Index)

 Select Case Index

 Case 0

 xIncr = (xEnd - xBegin) * 0.1 '10% zoom

 yIncr = (yEnd - yBegin) * 0.1 '10% zoom

 xEnd = xEnd - Sgn(.Value) * xIncr

 xBegin = xBegin + Sgn(.Value) * xIncr

 yEnd = yEnd - Sgn(.Value) * yIncr

 yBegin = yBegin + Sgn(.Value) * yIncr

 Case 1

 If incX = 1 And Sgn(.Value) = -1 Then

 .Value = 0

 Exit Sub

' ElseIf incX < 0.2 Then

' Incr = 0.001

' ElseIf incX < 2 Then

' Incr = 0.1

 ElseIf incX < 20 Then

 Incr = 1

 ElseIf incX < 100 Then

 Incr = 5

 ElseIf incX < 1000 Then

 Incr = 25

 Else

 Incr = 100

 End If

 incX = incX + Incr * Sgn(.Value)

 incY = incY + Incr * Sgn(.Value)

 End Select

 .Value = 0

 End With

 DrawScale

End Sub

Private Sub scrSelect_Change(Index As Integer)

 With txtInput(Index)

 If Index <> 8 And Index <> 18 Then 'Turning direction

 .Text = .Text + scrSelect(Index).Value / 100

 ElseIf Index = 8 Then

 If scrSelect(Index).Value > 0 Then

 If .Text = "Left" Then

 .Text = "Right"

 ElseIf .Text = "Right" Then

 .Text = "Center"

 ElseIf .Text = "Center" Then

 .Text = "Left"

 End If

 ElseIf scrSelect(Index).Value < 0 Then

 If .Text = "Left" Then

 .Text = "Center"

 ElseIf .Text = "Right" Then

 .Text = "Left"

 ElseIf .Text = "Center" Then

 .Text = "Right"

 End If

 End If

 ElseIf Index = 18 Then

 .Text = .Text + scrSelect(Index).Value / 10000

 End If

 End With

 scrSelect(Index).Value = 0

End Sub

Private Sub txtInput_Change(Index As Integer)

 If ChangeCar = False And Index <= 3 Then

 comVehicle.Text = "Custom"

 Else

 Select Case Index

' Case 5

' If Gyrate = True Then

' txtInput(5).Text = Sqr(MmtInertia / Mass)

' End If

 Case 8

 If txtInput(8).Text = "CE" Then

 txtInput(9).Enabled = False

 scrSelect(9).Enabled = False

 'lblCaption(9).Enabled = False

 Else

 scrSelect(9).Enabled = True

 txtInput(9).Enabled = True

 'lblCaption(9).Enabled = True

 End If

 End Select

 End If

End Sub

Private Sub comVehicle_Click()

 ChangeCar = True

 Select Case comVehicle.Text

 Case "Custom"

 ChangeCar = False

 Exit Sub

 Case "McLaren F1"

 carMcLaren

 Case "Imaginery Car"

 carImagine

 End Select

 InitBoxes

End Sub

Private Sub cmdsnap_KeyDown(KeyCode As Integer, Shift As Integer)

 If KeyCode = vbKeyEscape Then cmdPause_Click

End Sub

Private Sub cmdpause_KeyDown(KeyCode As Integer, Shift As Integer)

 If KeyCode = vbKeyEscape Then cmdPause_Click

End Sub

Private Sub cmdstop_KeyDown(KeyCode As Integer, Shift As Integer)

 If KeyCode = vbKeyEscape Then cmdPause_Click

End Sub

Private Sub cmdclear_KeyDown(KeyCode As Integer, Shift As Integer)

 If KeyCode = vbKeyEscape Then cmdPause_Click

End Sub

Public Sub carMcLaren()

 ChangeCar = True

 carLength = 4.29 'meters, 4.29x0.82

 carWidth = 1.82 '1.82

 Mass = 1139 '1139 kg

 CenterRear = 0.412 '.412

 CoeffKin = 10 / 11.16

End Sub

Public Sub carImagine()

 ChangeCar = True

 carLength = 7 'meters, 4.29x0.82

 carWidth = 2 '1.82

 Mass = 4000 '1139 kg

 CenterRear = 0.7 '.412

 CoeffKin = 0.8

End Sub

'Public Sub initToolTip()

' lblDesc(18).ToolTipText = _

' "0-most sensitive, 1-no sensitivity." & Chr$(13) & _

' "0.0001 is the default, and represents a very rigidly locked " & _

' "front-wheel steer-direction. A value of 1 means that the front " & _

' "wheels are free to turn, like a shopping cart, and therefore " & _

' "will provide no friction."

'End Sub

Public Sub Timer1_Timer()

 timeCount = timeCount + 1

 If timeCount = 1 Then

' frmGraph.Enabled = False

 frmSplash.Show

 ElseIf timeCount >= 25 Then

 Timer1.Enabled = False

 frmGraph.Show

' frmGraph.Enabled = True

 frmSplash.Hide

 Unload frmSplash

 End If

End Sub

Public Sub Timer2_Timer()

 tick = True

' t = t + incT

' CurrentX = t / 1000: CurrentY = 1

' 'Print "."

' MsgBox ("")

End Sub

FormOption

Option Explicit

Private Sub Form_Load()

' MsgBox (Gyrate)

 frmGraph.Enabled = False

 If Gyrate = False Then

 optValue.Value = True

 optGyrate.Value = False

 Else

 optValue.Value = False

 optGyrate.Value = True

 End If

End Sub

Private Sub cmdOK_Click()

 If optValue.Value = True Then

 Gyrate = False

 Else

 Gyrate = True

 End If

' MsgBox (Gyrate)

' Form_Unload 1

 ToggleGyrate

 Unload Me

End Sub

Private Sub cmdCancel_Click()

' Form_Unload 1

 Unload Me

End Sub

Private Sub Form_Unload(Cancel As Integer)

 frmGraph.Enabled = True

 frmGraph.Show

End Sub

Public Sub ToggleGyrate()

 With frmGraph

 If Gyrate = False Then

 .txtInput(5).Text = MmtInertia

 .lblCaption(5).Caption = _

 "Moment of Inertia (kg-m^2)"

 .lblCaption(5).ToolTipText = _

 "1000 lb-ft-sec^2 = 1355.8 kg-m^2 Must be non-zero. Can be negative."

 .txtInput(5).ToolTipText = .lblCaption(5).ToolTipText

 .scrSelect(5).SmallChange = 5000

 Else

 .txtInput(5).Text = Sqr(MmtInertia / Mass)

 .lblCaption(5).Caption = _

 "Radius of Gyration (m)"

 .lblCaption(5).ToolTipText = _

 "10 ft = 3.048 m Must be non-zero (negative OK). Specify by assuming " & _

 "all mass concentrated this distance from mass center."

 .txtInput(5).ToolTipText = .lblCaption(5).ToolTipText

 .scrSelect(5).SmallChange = 10

 End If

 End With

End Sub

Endnotes

Projected line of travel

Projected line of travel

Figure 1. Over-steering.

(

v

F1

F3

F4

F2

v4

v3

v2

v1

center of mass

lateral axis

longitudinal friction (negligible)

lateral friction

Figure 2. Forces on a front wheel with no braking.

N – normal force

center of mass

Figure 5. A sliding vehicle in motion.

Figure 4. Contact area patch rotation

patch rotating in

patch rotating off

slide direction

Figure 3. Ackerman steering geometry

� The following two games are the only ones to my knowledge that appear to be scientifically accurate. Even then, however, their user-configurability is very limited, and in any case they are not useful for scientific study.

Need for Speed II, by Electronic Arts at www.nfs2.com, is a very realistic PC racing game. Thus far I have not been able to detect any artificial dynamics during game-play.

Unknown name. There is a very old (at least eight years) driving (not racing) simulation arcade game, which I happened to come upon recently. I was surprised to learn that it simulates very accurate dynamics.

� Zero speed is not allowed. However, it can be set to as small as 1e-40.

� The default value of the user-configurable parameter tincr is 0.01 seconds, which gives reasonably accurate approximations over a wider range of speeds and configurations.

PAGE
1

